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Can Colored Noise Improve Stochastic Resonance? 

Peter H~inggi, 1 Peter Jung, 1 Christine Zerhe,1 and Frank Moss  2 

The phenomenon of stochastic resonance is studied in the presence of colored 
noise. Several sources of colored noise are introduced and the consequences for 
the asymptotic time-periodic probability and the (phase-averaged) power spec- 
trum are discussed. Based on space-time symmetry considerations, selection 
rules for the occurrence of g-spikes in the power spectrum are derived. The effect 
of colored noise on the amplification of small periodic signals is studied in terms 
of effective, time-periodic Fokker-Planck equations: In overdamped systems 
driven by colored noise, we find that SR is suppressed with increasing noise 
color. In contrast, for colored noise induced by inertia (as well as for asym- 
metric dichotomic noise), one obtains an enhancement of SR. This latter result 
is obtained by studying the Kramers equation perturbed by a small periodic 
force. 

KEY WORDS: Nonstationary stochastic processes; colored noise; stochastic 
resonance; escape times; time-periodic Kramers equation. 

1. I N T R O D U C T I O N  A N D  C O N C L U S I O N S  

The study of t ime-dependent  stochastic systems recently underwent  a 

renaissance in the context of phenomena  like "stochastic resonance" (SR) 
(see refs. 1 and  2 for recent reviews) and "resonance activation. ''~3t SR is a 
cooperative effect of noise and  periodic forcing in a bistable system. It is 
characterized by a noise- induced large response to a weak periodic signal. 

Thus, the SR effect can be used to amplify a weak (trial) signal by sub- 
ject ing it to noise of external or internal  character. Roughly speaking, the 

signal-to-noise ratio exhibits as a funct ion of noise intensi ty a bell-shaped 
curve, i.e., increasing noise c a n - - i n  a counter intui t ive  m a n n e r - - e n h a n c e  the 
signal amplification. In  order for SR to occur in modera te - to-overdamped 
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systems it is essential that the unperturbed system possesses a frequency scale 
(lowest eigenvalue 21) which is decreasing exponentially with decreasing 
noise intensity. This in turn implies that the system is required to exhibit 
some sort of metastability which is usually introduced by a multi- or 
bistable potential field. Likewise, such a bistability can also be induced 
differently either by a nonlinear friction mechanism which implies two 
basins of attraction, such as, e.g., two-stable limit cycles 3 (see also ref. 4), 
or can be induced dynamically via the well-known effect of "resonance 
hysteresis "(5~ in periodically driven nonlinear oscillatory systems. SR might 
not necessarily occur with noise-induced bistability, due to the possible 
absence of a softening of the first nonvanishing eigenvalue. 

The application of the periodic force of period Te alternately raises 
and lowers each potential well with respect to the barrier separating the 
metastable states. Now with the forward and backward hopping times 
denoted by T + and T- ,  the system optimally follows the external modula- 
tion when Te "~ T + + T - .  With T + and T-  related to the lowest frequency 
scale J~min in the unperturbed system, i.e., }~min = I / T + +  l / T - ,  the condi- 
tion for SR thus reads for symmetric escape times T + = T-  

7E 
12 "~ 2 )"min (1 .1)  

Here, 12 = 2rC/Te denotes the (angular) frequency of the coherent external 
small signal. 

In this work our focus will be on the role of realistic noise for SR. In 
many situations the time scale of random perturbations is very much shor- 
ter than that of the characteristic time scale of the system. It is then a good 
working assumption to use uncorrelated (i.e., a-correlated) random forces. 
This assumption considerably simplifies the problem, because it allows one 
to treat the dynamics within the notion of Markov processes. In the physi- 
cal world, however, this idealization is never exactly realized. In order to 
understand the importance of corrections to white noise, and more 
generally, in order to investigate the role of noise correlations of arbitrary 
strength, it is thus necessary to study also nonwhite noise, i.e., "noisecolor" 
of small to moderate-to-large correlation strength. Strong noise color is not 
unrealistic for many physical applications. Usually a strongly correlated 
noise emerges as the result of a coarse graining over a hidden set of slow 
variables, or it simply is applied by the experimenter externally. Histori- 
cally, colored noise of arbitrary long correlation times was introduced by 

3A nonconservative flow processing two stable limit cycles (and one intermediate unstable 
limit cycle) is given by 2 + a sin(2) + x = 0. 
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Kubo in his cornerstone papers on the theory of the transition of 
Gaussian-like line shapes toward Lorentzian-like ones in nuclear magnetic 
resonance (6) ("motional narrowing"), or for paramagnetic resonance (7) 
("exchange narrowing"). 

In practice, one wishes to monitor only a few, and preferably just one 
physical variable. With the objective to obtain a tractable description, the 
theorist, too, prefers a low, preferably a one-dimensional description. There 
is a price to be paid, however, for such a simplification. This is so because 
a low-dimensional flow implies a loss of the Markov property of the 
original higher-dimensional system. In recent years, a lot of sweat has been 
invested by a large number of theoretical practitioners in developing such 
efficient (non-Markovian) colored noise approaches (note the various 
review articles--and references therein--in ref. 8). Our principal objective 
is to use and to expand upon this colored noise work for the study of 
nonstationary processes such as the phenomenon of SR. 

The paper is organized as follows: The next section introduces several 
classes of Gaussian colored noise sources characterized by several time 
scales. In particular, we consider oscillatorlike noise, which assumes 
correlation forms other than the commonly used simple exponential decay 
typical for Gaussian Ornstein-Uhlenbeck noise. In Section 3 we elaborate 
on general properties, such as the selection rules for g-function peaks in the 
power spectra of periodically driven stochastic processes. In Section 4 we 
lay the groundwork for colored noise and SR by setting up the relevant 
approximation schemes. Section 5 is devoted to the study of noise color for 
SR in overdamped systems at small and moderate-to-large noise correla- 
tion times. The last section treats SR for the bistable Kramers equation. 

The main conclusions are here summarized: 

(i) The phase-averaged power spectrum of periodically driven 
stochastic systems subjected to colored noise sources exhibits 6-peaks at 
multiples of the external driving frequency. With a symmetric bistable flow, 
Gaussian stationary colored noise sources composed of one to many time 
scales yield selection rules for the weights of corresponding 6-peaks. For 
example, for additive noise and additive driving only 6-peaks at odd- 
numbered multiples of the driving frequency occur. 

(ii) The asymptotic long-time probability pt(x; ~o) for SR in the 
presence of colored noise is time-periodic. 

(iii) The effect of noise color for SR can be dealt with by an effective 
time-periodic Fokker-Planck operator, both in the limit r--, 0 (small-z SR 
approximation) and also for v~> 1 (unified colored-noise SR approxi- 
mation). 
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(iv) SR in overdamped systems driven by additive exponentially 
correlated colored Gaussian noise ~(t) is always reduced as compared to 
the case with white noise (~ = 0) of the same strength D. The amplification 
t/(f2, A) is well approximatea by use of linear response theory. The peak for 
SR is shifted to larger noise intensities due to the fact that colored noise 
suppresses (exponentially) the hopping rate with increasing noise color. 

(v) The result of SR for the driven Kramers equation predicts an 
enhancement of SR within the regime of moderate to large friction 7 for 
increasing noise color as measured by the time scale y 1. 

(vi) With overdamped SR being characterized mainly by the 
behavior of the hopping rate, we conclude that SR (within the linear 
response approximation) is reduced also for symmetric (additive as well as 
multiplicative) non-Gaussian, dichotomic noise ~oM(t). (36 38) This is so 
because symmetric dichotomic noise always leads to an exponential 
decrease for the rate with increasing noise color. (36) 

(vii) For asymmetric dichotomic noise, however, an increase of the 
noise color generally does not yield a lower rate./39) In this case, therefore, 
SR can be enhanced or suppressed, depending on the specific structure of 
the asymmetric dichotomic noise. (39) 

2. CLASSIFICATION OF COLORED NOISE SOURCES 

We next discuss various classes of Gaussian c010red noise sources. 

2.1. Exponentially Correlated Gaussian Noise 
(Ornstein-Uhlenbeck Noise) 

The archetypal source for colored noise consists of an exponentially 
correlated process given by a Gauss-Markov process ~(t), 

= _ 1  +  w(t) (2.1) 

where ~w(t) denotes Gaussian white noise of vanishing mean and with 
correlation ( ~ ( t ) ~ w ( s ) ) = 2 6 ( t - s ) .  It then follows from (2.1) that the 
stationary correlation of ~(t) is given by 

( ~(t) ~(s) ) = (D/z)  exp(I t - sl/~) - S ( t  -- s) (2.2) 
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Its spectrum thus assumes a Lorentzian form, i.e., 

S(0)) = S(t) exp(i0)t) dt = S ( -0 ) )  = - -  

such that S(0) = 0) = 2D. 

2D 
1 -}- "/720) 2 
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(2.3) 

2.2. H a r m o n i c  Noise 

For colored noise possessing structural features, such as, e.g., resonan- 
celike spectral shapes, a noisy damped oscillator presents an ideal 
archetype. It is represented by a two-dimensional Gauss-Markov process 
of the form (9' lo) 

= v (2.4a) 

~" = ~ = - 7v - 0 ) ~  + ~ ~w(t) (2.4b) 

The stationary correlation is then given by (y2< 40)02): 

S(I) = yoo2 oD~ exp ( - ~  y jtl )Icos(col t) + Z--sin(0)l t)  (2.5) 

with 0)2 = co02 _ 72/4. This yields for the spectrum 

2D 
S(( .o)  = 0)2])2 -1- (0)2 _ 0)2)2  (2.6) 

This very harmonic noise has recently been studied in the context of 
colored-noise-driven bistability by Schimansky-Geier and Zfilicke. (1~ 

2.3. M u l t i s c a l e  Co lored  Noise 

The harmonic noise in Section 2.2 can be generalized to include 
memory damping composed of many time scales. Following the generalized 
Langevin treatment in refs. 11-13, we set 

= v (2.7a) 

~.'= 1) = - 0 ) ~ -  O( t - s )~ ( s )ds+t l ( t  ) (2.7b) 

with r/(t) a non-Markovian stationary Gaussian noise of zero mean and 
correlation 

< r/(t) r/(s) > = D~)(t - s) (2.7c) 
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The colored noise ~(t) can be recast as an 
Gauss-Markov process by writing (13~ 

~ l l  = - -  C l U  - -  ~1~]1 "q- ~2 -~" ~ (wl)(/) 

02  ~-- - - C z ~ I  - -  ~2/~2 -}- ~3  -]- ~w(2)(t) 

//, = _ G~/~_ _ 7~t/~ + 0 + ~(~3w (t) 

where 

(n + 2)-dimensional 

(2.8) 

and 

Vi >~ 0, ci > 0, i = 1,..., n; Yn > 0 

( ~ w ( t ) ~ w  (s))=2cS~D7, cm • ( t - s )  (2.9) 
1 

The Laplace transform ~b(z) of the memory damping assumes the 
continued-fraction expansion 

c l  c2 . . .  c,, (2.10) 
~ ( Z )  = Z -.~ ~)1 ,- ~- Z -~- ~)2 .- ~- Z - ' ~ )  n 

Clearly, this form allows both rot ~scillatory decaying and multi-exponen- 
tially-decaying memory damping functions ~b(t). In the following section we 
shall investigate some general properties of these various colored noise 
sources for stochastic resonance in a symmetric bistable potential. 

3. SELECTION RULES FOR STOCHASTIC RESONANCE 

In the context of stochastic resonance we consider a symmetric 
double-well system driven by a deterministic periodic modulation and noise 
~(t). Using the bistable nonequilibrium Ginzburg-Landau flow dynamics, 
we set 

2 = a x  - b x  3 + g ( x ) d  sin(t'2t + p) + ~(t) (3.1) 

where ~(t) is either white Gaussian noise or one of the colored Gaussian 
noise sources introduced in the previous section. With r white noise the 
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process x(t) in (3.1) constitutes a nonstationary Markov process with a 
time-periodic Fokker-Planck operator. For colored noise ~(t) of Gaussian 
character the previous three noise sources all can be represented as 
Gauss-Markov processes of rank 1, 2, and n + 2, respectively. Following 
the general theory in ref. 14, it then follows that the composed process 
made up by the Gauss-Markov process and the state variable x(t) con- 
stitutes a nonlinear nonstationary Markov process of rank 2, 3, and 
n + 3, respectively, with a (multidimensional) time-periodic Fokker-Planck 
operator. Integrating over the components of the Gauss-Markov noise 
process then yields at large times a periodic asymptotic probability solution 
for the periodically driven (non-Markovian) process x(t), i.e., 

P~s(X, t; ~p) = P~(x, t + 2~/s ~p) (3.2) 

Likewise, the periodicity of the multidimensional Fokker-Planck operator 
implies periodic, phase-averaged asymptotic correlations. In particular, the 
non-Markovian asymptotic correlation becomes, with t - t ' -  = ~, t > t' (see 
refs. 15, 16), after phase averaging, 

S,s (~) -  lira (x ( t )x ( t ' ) )~=2 ~ Im,,12cos(ns (3.3) 
t > t ' - -*  o o  , v ~ o o  n = l  

with the set {M,,} determined from the asymptotic, periodic mean value, 
i.e., 

(x( t ) ;q~as  = ~ m,  exp[in(f2t+~o)], m o = 0  (3.4) 
n ~  o o  

After neglect of transients (i.e., ~ ~ oo), the phase-averaged correlation 
is not strongly mixing; ~ls'x6) the weights ]M,I 2 give rise to fi-spikes at 
multiples of the driving frequency s i.e., 

Sas(CO) = 27r ~ IM, j2 6(09- ns (3.5) 
? l =  - -  or 

With ~(t) being white noise and the bistable flow h ( x ) = a x - b x  3= 
- h ( - x )  being antisymmetric, we previously found the following selection 
rules(15, 16). 

1. g(x) = g ( -  x) symmetric ~ r M2, 12 = 0 
i.e., only 6-spikes at odd multiples of the driving frequency 
occur (3.6) 

2. g ( x ) =  - g ( - x )  asymmet r ie~  [M,] = 0  for all n 
i.e., no 6-spikes at all occur (3.7) 

8 2 2 / 7 0 / ~ - 2 - 3  
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These selection rules for SR can now be generalized for colored noise 
by observing the generalized parity symmetry obeyed by the corresponding 
multidimensional Fokker-Planck operator. 

First, let us discuss the case where g(x )=  - g ( - x )  is antisymmetric. 
The corresponding multidimensional Fokker-Planck operator then implies 
the parity symmetry ~:  

Ornstein-Uhlenbeck noise: 

Harmonic noise: 

X ' ~  - - X  

(3.8) ~---, __~ 

X - - +  - - X  

4-,  - 4  (3.9) 

Memory damping: 

.X7 -.-+ - - X  

(3.1o) 
/) ---. - - / )  

qi ~ -- t/i, i = 1,..., n 

These generalized parity symmetries thus imply that Pa~(x, t;q)) is 
symmetric in x at all times t. Therefore, <x(t); ~0>as=0, which again 
implies no 6-spikes at all for the asymptotic long-time spectrum, i.e., 

g (x )=  - g ( - x )  asymmetric=~ ]Mn] = 0  for all n (3.11) 

With a symmetric modulation shape function g ( x ) = g ( - x ) ,  e.g., g(x)-= 1, 
the multidimensional periodic Fokker-Planck operator still obeys a 
generalized parity, but now it also involves the time variable. With the 
period of the external driving given by Te = 2~/g2 the new generalized 
parity ~ reads for the state variables the same as before, but the time 
variable is transformed according to 

! T  (3.12a) t - ~ t + 2  e 

Expanding the periodic multidimensional, asymptotic probability 
pas(X, ~, v,..., rli,..., t; q~) into a Fourier series and integrating over the state 
variables of the noise, one ends up with a periodic, non-Markovian 
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asymptotic probability Pas(X, t;cp) composed of Fourier components 
{cn(x)} obeying cn(x)--  ( - 1 ) "  c , ( - x ) .  The periodic, asymptotic mean 
(x(t); ~o) thus involves only odd Fourier components. This in turn implies 
the selection rule 

g ( x ) = g ( - x )  symmetric ~ only M2,+1~0  (3.12b) 

i.e., for white noise ~w(t), as well as for all stationary Gaussian colored 
noise sources introduced in Section 2, the selection rules for the fi-spikes in 
the asymptotic spectral density do not change! 

Moreover, with a symmetric flow h ( x ) = h ( - x )  and antisymmetric 
shape function g ( x ) =  - g ( - x )  a reasoning just as before would imply the 
selection rule M2n + 1 = 0, M2n r 0; i.e., only even-numbered fi-spikes survive 
the asymptotic spectrum S~s(co). 

4. A P P R O X I M A T I O N  S C H E M E S  FOR N O N S T A T I O N A R Y  
COLORED NOISE PROCESSES 

In the previous section we dealt with colored noise by embedding 
the correlated noise into a higher-dimensional Markov process. In the 
presence of nonlinear flows, however, these many-dimensional Markovian 
schemes do not prove to be very effective in obtaining analytical (or even 
numerical) results. The exception is the linear flow driven by colored 
noise, which can be solved in closed form in any finite dimension (see 
Appendix A). As a consequence, a great many statistical physicists engaged 
in research aimed at obtaining tractable approximation schemes which are 
low-dimensional (mostly one-dimensional) in character. (8) Generally, the 
approximation schemes become useful only if they reduce to an (effective) 
Fokker-Planck form. Such a procedure, however, is not without limitation: 
The approximation has a limited range of validity, addressing mostly 
asymptotic regimes of small or very large noise correlation time. For the 
sake of simplicity and clarity only, we shall in the following address 
exponentially decaying colored noise characterized by a unique time scale 
r; see (2.2). 

4.1. Sma l l -Cor re la t ion -T ime  Approx imat ion  

Given (3.1), we use for ~(t) Ornstein-Uhlenbeck noise [see (2.1)] and 
set for the shape function g(x) a constant, i.e., g ( x ) -  1. The nonstationary 
bistable flow thus reads 

= ax - bx ~ + d sin(f2t + cp) + ~(t) (4.1a) 



34 H~inggi e t  al.  

with 

({( t )  3(0))  = (D/r) exp( - I t l / v )  (4.1b) 

In the following we shall work with dimensionless variables, i.e., we rescale 
the state variables and the time according to (the direction of the arrow 
refers to the dimensionless variables): 

at--+ t 

a'r-+ T 

s --* f2 

( b a - l )  1/2 x ---+ x (4.2) 

(ha 3)1/2 ~ _+ e 

( b a -  3) 1/2 ~4 --* d 

1D/~ U --, D 

where A U = a 2 / 4 b  denotes the barrier height of the bistable, symmetric 
potential. Equation (4.1) is then recast in dimensionless quantities as. 

2 = x - x 3 + ~4 sin(f2t + (p) + ~(t) (4.3) 

with <~(t)r  = ( D / r ) e x p ( - I t l / r ) .  Because the colored noise source is 
not affected by the periodic driving force, the effective Fokker-Planck 
approximation at small noise color follows by using the same reasoning as 
put forward for time-homogeneous processes. (8' 17 2o5 The result thus reads 

0 
Pt(x; r) =- - ~ { [-x -- x 3 + d sin(f2t + ~p)] p, (x;  r)} 

0 2 
+ D ~ x  2 { [1 + z(1 - 3x2)] p, (x ;  z)} (4.4) 

In this context we emphasize again (2~ the regime of validity for (4.4): The 
result in (4.4) holds good for small z--+ 0, with the (dimensionless) ratio 
r iD  ~ 1 staying small. The Fokker-Planck equation (4.4) serves as our 
starting point to evaluate the effect of noise color on SR in Section 5. 
In contrast to the white noise case (r = 0), it involves a state-dependent 
diffusion coefficient. In passing, we point out that the decoupling approxi- 
mation,(2o. 2t) although somewhat crude, would describe the effect of noise 
color solely within a renormalization of the noise intensity, i.e., 

D --+ D / [ 1  - z(1 - 3 (x2>)3 ~ O/(1 + 2r) (4.5) 
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4 . 2 .  Unified-Colored-Noise Approximation (UCNA) 

Following ref. 22, we consider next an approximat ion  scheme aimed at 
eliminating adiabatically the velocity 2. 

Upon  a differentiation of (4.3) we obtain 

2 = 2 ( 1  - 3x2) + sgs cos(t2t + ~o) + ~ 

With a substitution of ~ [see (2.1)] the flow in (4.3) is 
represented as 

5C = ~ ( l  - -  3X 2) + ~ r  c o s ( Q / - { -  ~o) 

1 D ~/2 
+-[x- -x3+~Csin( f2 t+cp) - - s  r 

By use of a new time scale, i.e., i =  t = v I/2t, this is recast as 

2 + 2 7 ( x , z ) _ ( x _ x 3 ) _ d z  ~ + Q 2  

x sin(Q~l/Zt + ~) = Dm/2~w(Zl/2t ) 

(4.6) 

equivalently 

(4.7) 

(4.8) 

where 7(x, r)  - [ z -  l/2 + ~ 1/2(3x2 _ 1 )], and ~b = (p + e with tan c~ = s Note  
that JT(x,r)l approaches infinity both for r - -*0 and z- - ,oe .  With 
7(x, z) --+ oo, we may set 2 equal to zero, yielding the U C N A  approxima- 
tion for SR, i.e., 

~- ~-- l (X,  Z){(X --  X 3) + g ~ [ ' l  -]- ~(~2"C23 1/2 

x sin(f2ri/2t + ~b) + Dl/2rm/4~w(t ) } (4.9) 

With r---,0, this adiabatic approximat ion  is well justified. In contrast,  
with r ~ oo the variat ion of 2 is with lime ~ ~ ~ sin(t2r~/zt) being rapidly 
oscillating, not  slowly varying. The approximat ion  in (4.9) nevertheless 
still holds good for z ~ oo if we note that the best Fokke r -P l anck  approxi-  
mat ion to the Langrangian  Lf of the path integral solution (23--26) for the 
nons ta t ionary  colored noise process x(t), i.e., 

Y [ x ( s ) ]  = (4D) -1 {r2 + .~[1 - z(1 - 3x2)] - sr163 cos(f2t + cp) 

- [ x - x  3 +sY sin(f2t + (p)] }2 (4.10) 

is obtained by setting 2 = 0; see also refs. 23-26. 4 This in turn is (within the 
prepoint  discretization) consistent with the white noise Langevin equat ion 

4 In writing (4.10), we have neglected boundary terms; for details see ref. 25. 
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(4.9)! The corresponding Fokker-Planck equation possesses a strictly 
positive diffusion coefficient, independent of the size of the correlation time 
r. The UCNA for time-homogeneous processes has been proven to yield 
good results for the invariant stationary probability. We thus expect that 
(4.9) also yields good results for the time-periodic asymptotic probability 
pa~(X, t; q~; ~) for both r ~ 0 and z -~ oe. 

5. STOCHASTIC  RESONANCE FOR COLORED NOISE 

As mentioned in the Introduction, the SR describes the amplification 
of small signals embedded in a noisy background. It occurs when the time 
scale of the external driving frequency T~ = 2rc/O is of the order of the 
escape time from one of the metastable wells. Given weak noise, the noise 
strength D---DsR = A U/[ln(Te~OO/4~)], with ~o 0 denoting the angular well 
frequency, results in a hopping dynamics between the two metastable states 
most highly correlated with the external driving signal. Following ref. 15, 
the SR is measured by the ratio between the "power" at the (angular) 
frequency s of S~(co) and the input power Pi, = ~A2. The signal amplifi- 
cation t/(~4, f2) is then given by (~5/ 

IMI[ a 
r/(d, g2)=4 d---- 5 -  (5.1) 

with MI the first Fourier component of the asymptotic, time-periodic mean 
value (x(t); q~)as. The ]MI] can be evaluated approximately by use of 
linear response theory. (15'27'28) With Z ( c o ) = ~  exp(i~ot)x(t)dt the (one- 
sided) Fourier transform of the response function X(t), which describes the 
perturbation in x(t), one finds (is) 

IMI[ ~-~-I)~(s (5.2) 

5.1. SR for Small Noise Color 

Given the small-correlation-time approximation in (4.4), the stochastic 
operator describing the perturbation reads 

Fe~(t) = -~sin(f2t+~o)~x=dsin(g2t+~o)Fe~t (5.3) 

i.e., / 'ext = --O/OX. In linear response the expectation, i.e., 

(x( t ) )  Z(t - s ) d  sin(•s + ~o) ds (5.4) 
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gives for the response function the correlation function result (27) 

z(t)  = o(t)(x(t) ~[-x(0)]  ) (5.5) 

where ~b[x] = - (c~/#x)[ln Pst(X, 3)] is a fluctuation of vanishing mean and 
O(t) denotes the step function. Here, Pst(X; 3) denotes the stationary, unper- 
turbed probability. From (4.4) it is given explicitly by 

P s t ( X ' 3 ) = l [ l + 3 ~ - ~ 3 x Z ) ] l e x p -  - 2 X D + ~ X  1 - ~ 3 ( x - x 3 )  2 (5.6) 

where Z denotes the normalization constant. Thus, the fluctuation ~b[x, 3] 
is evaluated to read 

q~[X, 3] = D - l [ 1  + 3(1 - 3x2)] -1 ( x - x 3 + 6 D 3 x )  (5.7) 

An alternative form for the response function can be obtained following ref. 
27: If we denote by F the unperturbed (~4 = 0) Fokker-Planck operator in 
(4.4), we find, with $(x) defined by 

the result 

~bl-X, 3] Pst(X)= [[ 'extPst](X)= -- [-/)pPst](X) 

z(t)  = - O(t) ~ (x(O ~,[-x(0)] ) 

From (5.8) one finds with 3 small 

yielding 

d 0 = { D [ l + 3 ( 1 - 3 x 2 ) ] }  1 , ~ D - 1 [ 1 - 3 ( 1 - 3 x 2 ) ]  
dx 

(5.8) 

(5.9) 

(5.1o) 

~r = D l[x--3(x--x3)] (5.11) 

In conclusion, the response function Z(t) can advantageously be recast as 
the time derivative of the correlation 

Z(t) = - O ( t ) D  - 1  d (x(t){x(O)- 3 Ix(O) - x3(O)] } ) 

- O(t)D ' d Cx~ (5.12) 
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In the context of SR, we set for the correlanon (x(t) ~,[x(0); ~] )  the long- 
time approximation 5 

Cxo(t) ~ (xtp(x) ) exp(--2min t) + O(D) (5.13) 

= ( (x  2) + rD) exp(-2rain t ) + O(D) (5.14) 

TO obtain (5.14), we eliminated (x  4) by observing that (d/dt)(x 2) = 0 =  
( F + x 2 ) ,  where F + is the adjoint operator of F. Upon noticing that 
IMI[ =1s r  IZ(f2)I, we thus obtain for the amplification r /(d,  f2 ; r ;D)  in 
linear response approximation, i.e., r /(d,  f2)~r/(f2), from (5.1), (5.2) the 
result 

( )2 , 
~ ( ~ ) =  Iz(~)12= (x2)+~O (5.15) 

O 1 + (f2/2min) 2 

In the limit of small noise color and r/D ~ 1, "~min has been evaluated in 
previous works (19' 2o, 29) to read 

  )exp(1) "~min(T)=~Q 1To --2 

With (x  2) ~ 1, we obtain therefore (see footnote 5) 

1 1 
t l(f2),~7(l + 2rD) l +(l + M)(f22n2/2)exp(1/aD) (5.17) 

At stochastic resonance, i.e., f2 = (rC/2)2min, the peak height becomes 

1 +2~DsR(~) ( 1 ) 
max r/((2) = ~max ~ D2R(r) 1 + ~r2/4 (5.18) 

with 

Ds~(V) = ~ I ln/ /1 - 3z'~] -1 \ x / 2  (2JJ > DSR(~ = 0) (5.19) 

Put differently, with colored noise present, the peak in SR is shifted toward 
higher D values. Moreover, with qmax or 1/D2R, the peak value is, with 
DSR(Z) > DsR(Z = 0), reduced compared to SR at z = 0. These characteristic 
colored noise features become more pronounced with increasing noise 

5 At weak noise, the correction of O(D) can be approximated by a single exponential, see 
Eq. (6.3.46) in ref. 27, which in our case reads (D/2)exp(--2t)+O(zD2). For D~0, this 
implies for (5.17) the finite limiting value q(g2, D ~ 0) = (4 + 0 2) t; see also ref. 2. 
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color r. Indeed,  with r increasing, ,~min('C) becomes exponent ial ly  reduced in 
compar i son  to 2mi,(r = 0)6; see ref. 30. With 12 fixed, we therefore must  
increase D to match  the SR condit ion 12~(rC/2)2min. This results in a 
drastic shift of the SR peak toward  higher D values, and a corresponding 
reduction of the peak  height; see Section 5.2. In Fig. 1 we depict the result 
of the theory in (5.17). Indeed,  we find that  small noise color  suppresses the 
effect of  SR. 

5.2. SR w i t h i n  U C N A  

In order  to treat  bo th  small noise color and large noise color on the 
same basis, we consider the U C N A  in (4.9). To  compare  with Section 5.1, 
we use the original t ime scale, i.e., t=rmi .  The stochastic opera to r  
describing the t ime-periodic per tu rba t ion  then reads 

F~xt(t) = - d ( 1  + 122~2)1/2 sin(12t + (~) ~xx [1 - r (1  - 3x2)3  

-= d ( 1  + ~ ' - 2 2 ~ ' 2 )  1 / 2  s i n ( O / +  ~)Fr (5.20) 

with 

0 ( [  1 z(11 3x2)3 ) F e x t  = a X  - -  - -  

6A rough estimate based on the decoupling theory in (4.5) yields / ~ m i n ( T ) O C  exp[-(1 + 2r)/4D]; 
numerically (3~ one finds instead 2min(r ) oc exp[-(1 + 0.40/4D]. 

14  i ., i , 

1] 12, ~=0 f2 = 0.1 
=0.1 

1 0 .  = . 

8 .  

6 -  

4 "  

2 -  

0 
0 . 0  0 . 2  0 . 4  0 .6  0 . 8  1 .0  

D 

Fig. 1. The signal amplification r/, evaluated within linear response approximation [see 
Eq. (5.15)], depicted as a function of the noise strength D at so2 =0.1 for increasing values of 
the noise correlation time z. 
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Proceeding as before, we set 

UCNA UCNA [FextPs~ ](X) = -- [F~/tps t ](X) (5.21) 

which yields for the fluctuation 0(x) 

d 0UCNA(X,~) D _ I [  1 r (1- -3x2)]  
dx 

This yields 

~ouCNA(X, r ) = D  l[x--~(x--x3)] (5.22) 

Note that 0ucNA(X, V) coincides precisely with the smalM result in (5.11). 
In contrast to (5.11), however, we can use (5.22) for arbitrary ~ values, 
0 ~ v < oe. The response function zUCNA(t) thus reads 

d 
)~uc~A(t) = -O(t)D-l-fft (x(t){x(O)-r[x(O)-x3(O)]}) (5.23) 

with the long-time (low-frequency) approximation 

,~O(t)O-l)~min('C, D)(xOUCNA(X, ~)) exp(-- 2mi, t) (5.24) 

By the use of previous works (2~ 23-26.29.3o) we obtain within UCNA and 
path-integral methods for 2mi n the crossover approximation (3m 

~UiCNA("C, D ) -  N/f2 (1 + 3r)- ' /2 exp [ - -1  (1 + (27/16)'c + 1,~2~ 
- --~--- ~ i + ~  J J  (5.25) 

The corresponding result for the amplification thus reads 

~UCNA(fa)  = IzUCNA( co = "q)l 2 

-=((1--'r)(X2> q-'~(X4)) 2 UCNA1 (5.26) 
D 1 -q- [~r (Z', D ) ]  2 

where the mean values are evaluated with the stationary probability 

st l1 --z(1 --3X2)1 exp - (x--  x3) a 

x e x p -  4 D (5.27) 

which has a support over all x values for r <  1; but _UCNA,, ~)=--0, for P st t "x, 
[xl < [ ( r - -  1)/32] ~/2, when z >  1. The result in Eq. (5.26) is depicted in 
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Fig. 2. The amplification factor r/(g2) at C2=0.1 as predicted by the UCNA theory in 
Eqs. (5.25)-(5.27) plotted versus the noise strength D at moderate to large noise color ~. 

Fig. 2. We note the consistent shift toward higher D values induced by the 
exponential decrease of )~min with increasing noise color r. Related with this 
shift is the corresponding reduction of the SR peak value; see Fig. 2. With 
the moderate-to-large noise-color approximation (3~ 

2min=---~-~exp_( I + ~ F ]  \ 4D ] (5.28) 

where ~ = 0.1 for moderate r, and ~ = 8/27 as r ~ 0% we can evaluate the 
condition for SR in (1.1). Fixed D=(~/2)2mi n then yields for the noise 
intensity DSR at the SR-peak location the result 

DsR, -~(1  + ~ r )  In (5.29) 

Ds~ thus increases almost linearly with increasing r. The characteristic 
behavior depicted in Fig. 2 for SR in the presence of Ornstein-Uhlenbeck 
noise is in good agreement with the simulation results by Gammaitoni 
et  a./. (31) for the signal-to-noise ratio [this quantity is not quite identical 
with r/(C2)] at moderate noise color 0.2 < ~ < 1.36. 

6. S T O C H A S T I C  R E S O N A N C E  FOR T H E  K R A M E R S  E Q U A T I O N  

The systems considered thus far were restricted to the overdamped 
case with colored noise and periodic forcing. Here, we discuss thermal 
equilibrium systems subject to periodic driving. The archetypal situation 
is given by the stochastic motion of a Brownian particle in a symmetric 
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bistable potential field U(x)= 1 2 -  1 4 - 5 x  + xx driven by white Gaussian noise 
~w(t) which satisfies the fluctuation-dissipation theorem of the second kind, 
i.e., (~w(t)~w(O))=2D76(t). The Fokker-Planck equation is thus the 
driven Klein-Kramers equation (32) 

D,(x,v,t;q~)= - ~ x V + ? ~ v - ( x - x  3) - ~ 4 s i n ( ~ 2 t + ~ 0 ) ~ +  02 3v 7D 

xp,(x, v, t; q~) (6.1) 

where D - kT  characterizes the noise intensity and 7 is the damping coef- 
ficient. As before, all variables are assumed to be scaled dimensionless; see 
(4.2). In the presence of colored noise ~(t), the corresponding Langevin 
equation involves a memory friction. For weakly colored noise we give in 
Appendix B the result for the small-correlation-time approximation for 
colored-noise-driven thermal equilibrium systems. If we just add colored 
noise of the Ornstein-Uhlenbeck type to the deterministic flow, the noise 
does not obey the second fluctuation-dissipation theorem, i.e., the flow so 
obtained describes a nonequilibrium situation. For this latter non- 
equilibrium case, analog simulation results for SR have been studiect in 
ref. 31. 

W e  point out that the (x, v) dynamics contracted over the velocity 
would yield a stochastic flow perturbed by colored noise. In the limit 
? -~ oo we would recover the Smoluchowski dynamics perturbed by white 
Gaussian noise. In this sense 7 -1 is a measure for the amount of noise 
color present in (6.1). 

We now turn to the evaluation of SR. The response function for the 
variable x(t) is given, as it must be, by the classical fluctuation-dissipation 
theorem(27, s3) (of the first kind), i.e., with k T - D ,  

)~(t)= -O(t )D 1 d d ~t (x ( t )x (O))=--O( t )D l ~ C ~ ( t )  (6.2) 

The relevant long-time approximation for (x(t)x(O)) reads 

Cxx(t) ~ (x  2) exp(-;~Kt) + O(D) (6.3) 

where '~K denotes the lowest eigenvalue given by the celebrated Kramers 
rate FK; i.e., )~K=2FK. The (one-sided) Fourier transform )~(co) is thus 
approximated by 

Z(o)) ,,~ D-IAK(X 2 ) f ;  exp[-- t(ico + 2K)] dt -- 
D ico+2x 

(6.4) 
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From Eqs. (5.1), (5.2) we thus readily find for the amplification in linear 
response approximation 

(x2)  2 1 
~(~) = D 2 1 + ( ~ / , L D  ~ ( 6 . s )  

The essential input into (6.5) is thus given by the Kramers eigenvalue ;tx, 
which depends both on the noise intensity D and the friction 7. As is well 
known, the eigenvalue 2K(D, 7)/2Tsr, with 2xsT--(~/~)exp(--1/4D) 
denoting the transition-state estimate, exhibits as a function of increasing 7 
a bell-shaped dependence, commonly known as "Kramers turnover. ''(34) 
Whereas the detailed theory of this turnover is rather complex, (35) we use 
here a poor-man's (multiplicative) bridging expression given by Eq. (6.4) in 
ref. 34. With (angular) well frequency and (angular) barrier frequency given 
by co~=2 and co~= 1, respectively, barrier height AU= (4D) -~, and the 
abbreviated action at energy E = A U evaluated to be I b = 4/3, this bridging 
expression reads explicitly 

2 - 4 7  [(1 + 3D7-1) I/2- 72"~ 1/2 K--3DL(l+3DT_l)l12+~]4L(l+~) --27 exp (--+) (6.6) 
It obeys the well-known limiting forms 

and 

2X/2TST~ {(1 +72/4)1/2--7/2} as 7~>c%= 1 (6.7a) 

2K/2TST --* 4D- ~7 as 7 ~ 0 (6.7b) 

The result in (6.7a) holds within the steepest descent approximation, while 
(6.7b) holds within a harmonic-well approximation and large Arrhenius 
factors AU/D~> 1. The result for q(O) in (6.5), evaluated by use of (6.6), is 
depicted in Fig. 3. We note that SR is enhanced for decreasing damping 
strength, i.e., SR is enhanced for effective noise color (oc 7 -1) which is 
increasing. The increase of the SR peak height and the shift of the maxi- 
mum toward smaller D values with decreasing 7 follow from the fact that 
in (6.7a) the rate is decreasing for increasing 7- Put differently, increasing 
7 yields a smaller 2K, which with fixed O at the SR condition ~ = (n/2)2K 
must be compensated for by a higher value for the noise intensity DSR. In 
Fig. 3 we have with g? = 0.01 chosen not to plot SR curves for very small 
friction values 7 ~ 1. This is so because the weak-noise estimate in (6.6), 
(6.7b) for 7 ~ 0 is reached for very high barriers only, i.e., A U/D >> 1. This 
in turn would imply very small f2 values for the SR condition to be obeyed 
within the weak-noise estimate for 2x in (6.6). 
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Fig. 3. The signal amplification t/(s = 0.01)/or the Kramers equation [Eqs. (6.5) and (6.6)] 
as a function of the noise strength D -~ kT for three different damping strengths 7. 

A P P E N D I X  A 

The linear flow perturbed by Orns te in-Uhlenbeck  noise and periodic 
driving, i.e., 

sr  
2 = - ~x + e - ~ -  cos (~ t  + ~o) 

g 1 1 '2  
= - - + - D ~  ~w(0 

17 17 

(A.1) 

is exactly solvable. By differentiating 2 ~ 2 we find a periodically driven 
stochastic oscillator, i.e., 

2 = - 7)? - coZx + d sin(f2t + q~) + (kTT) 1/2 ~w(t) (A.2) 

with 

7 = e + ( I / z )  ( A . 3 a )  

~2 = ~/z (A.3b) 

k T =  (D/z2)(c~ + 1/z) ~ (A.3c) 

With  these substitutions, the Floquet  eigenvalues, F loquet  functions, and 
asymptot ic  probabilities can be readily read off from the explicit results 
given for (A.2) in ref. 14. Fo r  example, the Floquet  eigenvalues are given 
by 

2 , m = n ~  + m(1/z ) (A.4) 
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n, m =0 ,  1,.... The time-periodic, asymptotic probability pa~(x, t; q)) is a 
Gaussian given by 

(o:(o~'c +__1))1/2 { o:(o~z + l) 
p~(x, t; q~ )= \  2~D exp - 2D 

x I x -  ag(o%) sin(Ot + 0 + q3)~2~ (A.5) 
.) 

with 

o4 f a ( ~  + 1 ) 
~/(~'~) = r(o{/T_ (~2)2_.~,(~2(0r + 1..g,2~i/2 ; / ) j  tanq3 = " c~-- f22~ (A.6) 

APPENDIX  B 

For systems with internal exponentially correlated noise, i.e., a system 
which is in equilibrium with a heat bath in the absence of a periodic force, 
the Langevin equation reads 

, a u  (B.1) 
iJ = - 7 Jo ~ ~(t -- t') v(t') d t ' -  -~x + ar sin(f2t + 4o) + (TkT)1/2 ~(t) 

where ( ~ ( t ) ) = 0 ,  and 

( r ~(t') ) = ~ e x p  ( - ~  l t -  t'l ) (8 .2)  

In order to perform a small-correlation time analysis, we first embed (B. ! ), 
(B.2) in the three-dimensional stochastic process 

2 = v  

dU 
= - ~/z - -~x-x + d sin(f2t + (p) (B.3) 

~= - - z + - v - -  ~w(t) T "C "C 

Expanding the solution of the corresponding Fokker-Planck equation into 
the complete set of Hermite functions and neglecting all terms which are of 
order ~n, n > 1, as well as transient effects, we obtain for the Fokker-Planck- 
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type equa t ion  for the reduced  p robab i l i t y  p(x ,  v, t) = ~ o ~  dz p (x ,  v, z, t) the 

result  

/~,= - V ~ x + V ~ v V ( l + v r ) +  ~ - ~ - x - ~ 4 s i n ( Q t + q ~ )  

9 2 9 2 } 
+TkT(1  + 7 0 - ~ v 2 + 7 ~ k T ~ - ~ v  P, (B.4) 

The s t a t iona ry  so lu t ion  for ae = 0 i s  given by the canonica l  form 

p~t(x, v) = Z -~ exp{ - [ U ( x )  + �89  
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